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Abstract. We present a complete study of boundary bound states and related boundary
S-matrices for the sine-Gordon model with Ditichlet boundary conditions. Our approach is
based partly on the bootstrap procedure and partly on the explicit selution of the inhomogeneous
XXZ model with boundary magnetic field and solution of the boundary Thirring model. We
identify boundary bound states with new ‘boundary strings’ in the Bethe ansatz. The boundary
energy is also computed.

1. Introduction

The sine-Gordon model with a boundary interaction preserving integrability (which we
shall call the boundary sine-Gordon model} is of theoretical as well as practical interest,
In particular, it exhibits relations with the theory of Jack symmetric functions [1] and has
applications to dissipative quantum mechanics [2] and impurity problems in 1D strongly
correlated electron gas [3].

In the seminal work [4] it appears cleasly that this problem presents an extremely rich
structure of boundary bound states, which has been partly explored in [5]. Our first purpose,
here, is to study this structure further in the particular case of Dirichlet boundary conditions,
which is the model

oo 2 ’
Lss = %fn [(8:40)"" — (8.9 + %ﬁcosw] dx (1.1)

with a fixed value of the field at the boundary, ¢(x = 0,¢) = ¢p.

Also, the consideration of boundary problems poses interesting challenges from the point
of view of lattice models, or in this case lattice regularizations of (1.1). In [6] and also in
[7] it was shown, in particular, how to derive the S-matrices of [4] from the Bethe ansatz,
Our second purpose is to complete these studies by investigating which new types of strings
correspond to boundary bound states, and by also deriving the set of S-matrices necessary
to close the bootstrap. Note that lattice regularizations are useful when defining what one
means by creating a bound state at the boundary. Indeed, some bound states {(showing up
as the poles of S-matrices) have no straightforward interpretation, and although they are
easy to study formally using the Yang Baxter equation and the bootstrap, their meaning in
the field theory is unclear.
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In section 2, we consider the bootstrap problem directly in the continuum theory.
We identify boundary bound states and we compute the related boundary S-matrices. In
section 3, we write the Bethe ansatz equations for the inhomogeneous six-vertex model with
boundary magnetic field, which is believed [6] to be a regularization of (1.1}. We show
that these equations are also the bare equations for the Thiming model with L/ (1)-preserving
boundary interaction, which is the fermionized version of (1.1). In section 4, we discuss in
detail new solutions (*boundary strings’} to the Bethe ansatz equations made possible by the
appearance of boundary terms. In section 5, we study the physical properties of the model,
in particular the masses and S-matrices corresponding to these boundary strings, and we
partially complete the identification with the bootstrap results of section 2. Several remarks,
in particular formulae for the boundary energy of the boundary sine-Gordon model, are
collected in the conclusion.

2. Boundary bootstrap results

2.1. Solving the boundary bootstrap equations

The S-matrices for the scattering of a soliton (P*) and an anti-soliton (™) on the ground
state [0}z of the sine—~Gordon model with Dirichlet boundary conditions (1.1) were obtained
in [41:

PE@) = cos(§ £ M) Ry() R, (2, &) Q.0

where & = iu is the rapidity, § = 4m@/B and . = 8x/B% — 1. The explicit form of
Ry, Ry is rather cumbersome and can be found in {4]. Since the theory is invariant under
the simultaneous transformations £ — —£, and soliton— anti-soliton, hereafter we choose
£ to be a generic number in the interval 0 < £ < 472/ 82 (see the discussion in [8] about
the value of the upper bound).

The function Ry contains poles in the physical strip 0 < Imé < m/2 located at
u=nr/2h n=12 ... < A These poles come from the corresponding breather pole
in the soliton—antisoliton bulk scattering, and should not be interpreted as boundary bound
states [4]. '

When & > /2, the function PT(8) has additional poles in the physical strip, located
at u = v, with

£ 2n+41 4
0-<v,t_.)L 7 .‘."L'<E- (2.2)
(n=0,1,2,...) corresponding to a first set of boundary bound states which we denate by
| B}, with masses ’

£ 2n+ lw) 2.3)

My = MCOSY, =MCOS| — —
" " (1 2

where m is the soliton mass. These bound states are easy to interpret [4,8]. For
0 < gy < m/f the ground state of the theory is characterized by the asymptotic behaviour
g — 0 as x — co, but other states, whose energy differs from the ground state by a
boundary term only, can be obtained with ¢ — {a multiple of 27/8} as x — co. Since the
B. appear as bound states for soliton scattering, they ail have the same topological charge
as the soliton, which we take to be equal to unity by convention, so they are all associated
with the same classical solution, a soliton sitting next to the boundary and performing a
motion periodic in time (‘breathing’), with ¢(x = 0) = ¢ and ¢ —> 2%/8 as x — oo [8].
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To deduce the scattering matrices on the boundary bound states we use the ‘boundary
bootstrap equations’ as given in [4]. We assume that these S-matrices are diagonal, which
is true if all the boundary bound states have different energies. In this case the bootstrap
equations read:

RE(9) = E RA(9)SLL(6 + 1vf,)SEe (6 — ivk,). (2.4)

These equations allow us to find the scattering matrix of any particle & on the boundary
bound state 8 provided that the latter appears as a virtual state in the scattering of the
particle a on the boundary state ¢«.” The masses of the corresponding boundary states are
related through

mg = Mg +my cos v, (2.5)

where iz.’o‘ff,I denotes the position of the pole, corresponding to the bound state §.
Let B, stand for the nth boundary bound state corresponding to the pole v, in P+ (2.2).
Then (2.4) gives

PF(8) = P*(8)a(d - iv,)a( + iv,) (2.6)
Py (6) = b(8 — iv,)b(6 + iv,) PT(8) + ¢(6 — ivn)e(@ + i) PT®)  (27)

where the well known bulk S-matrix elements a(8) = ST = §_- (kmk—kmk scattering),
b(8) = 8§~ = SZT (kink-anti-kink transmission), and c(8) = ST+ = ¥ (kink-anti-kink
refiection) can be found in [9].

It is easy to check that the matrix elements (2.6)~(2.7) satisfy general requirements
for the boundary S-matrices, such as boundary unitarity and boundary crossing-symmetry
conditions [4], e.g.

Py (1-235 - 9) = b(26) P, (% + e) +cQ20) P, (% + e)
PE@O)PF(-8) = L. :

Finally, we obtain from (2.6)-(2.7) by direct calculation

fony _ COS(E — Am — 1}\.9)
Fe®) = cos(§ — Am +iAR) Py ©). (2'8)_
Hence the boundary Yang Baxter equation is satisfied, since the ratio of the above two
amplitudes has a form similar to (2.1) with £ — £ — Am, & being a free parameter.

The analytic structure of Pﬁ (8) is as follows. The function P; {(6) has simple poles in
the physical sirip located at # = (/A + (CN +1)/20)7, N=10,1,2,...,and at u = v,.
It has double poles at & = iy, + ikn /A, &k = 1,2, ..., n. The function Py, (6) possesses in
the physical strip the same singularities as P;; (&) plus the set of simple poles at u = wy
with

IN -1 1 A+l
i Ty T /‘»+§—§;>N>%——f§. (Z.9)

Interpreting these poles in terms of boundary bound states requires some care. First, due
to the relation (2.4), one sees that if 8 appears as a boundary bound state for scattering of
a on ¢, then the poles of the amplitude for scattering of & on « are also in ‘general poles of
the amplitude for scattering of b on 8. It seems unlikely that these poles comrespond to new
bound states, although in our case they would have a natural physical meaning, for example
one could try to associate them with classical solutions where ¢ — 4m/8 as x — co.
Indeed there are strong constraints coming from statistics that we should not forget. For
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instance, at the free fermion point B = 4 there is a bound state fi, but although P has
again a pole at f, the state of mass 2myg, is not allowed from the Pauli exclusion principle,
as can easily be checked on the direct solution of the model (see section 3.3). Therefore,
we take the point of view that the poles already present in the scattering on an ‘empty
boundary’ are ‘redundant’. The only poles we interpret as new boundary bound states are
(2.9) (the additional poles in P),;*; are related to them be crossing). We denote these boundary
bound states {8, v}, and their masses, according to (2.5) and (2.3), are given by

(§ 2n+1 2N ~1
m,,,N=m(cosv,;+cosz)=mcos(z-————2Tﬂ: —mcos §-+ TN big

N-n-—1
= ml,’v_,_n sin (% + -——2-;—31’) (2.10)

where mf’, = 2m sin{ pmr/2A) is the mass of the pth breather, p=1,2,... < A.

To understand the physical meaning of these new boundary bound states it is helpful to
consider the semi-classical limit A — o of the sine—Gordon model. As discussed above,
the boundary bound states $,, corresponding to (2.2), are associated with solutions where 2
soliton is sitting next to the boundary and ‘breathing’. An incoming anti-soliton can couple
to this soliton, and together they form a breather sitting next to the boundary and performing
again some (rather complicated) motion periodic in timet. The WKB quantization of this
solution [10] should lead to |8, »). The topological charge of the states |8, ») is equal to
zero in our units, or, equivalently, to the charge of a free breather in the theory (1.1).

One can, in principle, continue 1o solve the bootstrap equations (2.4) recursively. For
example, for the scattering of solitons or anti-solitons on the boundary bound states [4, v)
(2.9) one obtains the following S-matrices:

Py (6) = Pz (0)a(® —twn)a(f + twy) (2.11)
+ _ cos(§ —iAG) ,_

S T m 8" (2.12)

Py, has only one simple pole in the physical strip at u = wy, while Pa': , 2lso has simple
polesatu = v, k =n+1,n+2, ..., [E/A—1]. According to the discussion below (2.9), we
do not consider these poles as associated with new boundary bound states. Therefore, the
boundary bootstrap is closed for solitons and anti-solitons in the sense that further recursion
will not generate new boundary bound states.

So far we have obtained two sets of boundary bound states (2.3) and (2.10) by
considering all the poles in the physical strip of amplitudes for scattering a soliton and
anti-soliton on a boundary with or without a boundary bound state. Of course we should
also consider the scattering of breathers off the boundary. The scattering of breathers on the
‘empty’ boundary was studied in {5), and we refer the reader to this work for the explicit
boundary S-matrices. By interpreting the poles of the amplitudes in [5] as boundary bound
states, we find a spectrum of masses that look like (2.10) but with a slightly different range
of parameters. Therefore, considering scattering of breathers off a boundary with a bound
state does not give rise to any new poles besides (2.2) and (2.9), with in the latter case
an extended range of values of N (for simplicity we do not give the relevant boundary
S-matrices here). Therefore the complete boundary bootstrap is closed in principle.

t To compute this solution explicitly requires the use of a buik five-soliton configuration [8], an expression which
is very cumbersome.
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2.2. Integral representations of various §-matrices

For comparison with results obtained from regularizations of the sine~Gordon model it is
useful to write integral representations of the boundary S-matrices (2.1), (2.6), and (2.7)
using the well known formula

o« dx (-1 _ 1
logI'(z) = f e* [z — 1+ _] Rez = 0. {2.13)
0 x l1—e~*
Suppose first that 1 < 28 /7 < A +1 and denote
_[&_1
" = Lr - @.14)

where the square brackets mean the integer part of the number. For such values of £ there
are .+ 1 poles (2.2) in the physical strip, i.e. the spectrum of excitations contains boundary
bound states. Correspondingly, there is a finite number of I'-functions in (2.1), (2.6}, and
(2.7) whose arguments have negative real part so that formula (2.13) is not applicable.
Treating such I"-functions separately, we obtain the following results:

.d P 25 [ A ZABx)
"% °g[Ro(e)] 7 ) °°S( 7

sinh(2£ /7 — 2ny ~ D) sinh(A — 26/m)x
X[ sinh x 2sinh x cosh Ax @15
(Pr©)
BRI Ol B o (ZA.Bx)
de Ro(@) T Jemo b4
Smh(l 28 /m)x — 2coshx sinh(X 4+ 1+ 2r — §/m)x 2.16)
} 2sinh x cosh Ax )
.d Pr@ 2. 238x\ [ sinh(2ny + 2 — 28 j7)x
i lop | B = 2 dx
| R® | 7 S T ( - ) [ sinhx
+ smh{}n. Z‘g‘/n)x —2coshxsinh(A 4+ 1+ 2n — Z’g‘/n)x @17
2sinhx coshx 17

In the derivation of the analogous representation for P~ there are no subtleties because the
‘dangerous’ I"-functions cancel. We get
. d P=(®)] _ 24 228x\ $inh(h — 2 fm)x
—i—lo dx . .
‘a6 °F [ Ro(6) ] . C"S( - ) Zsmhrooshix = 18
In the region 0 < 25/m < 1, where thcre are no poles and no boundary bound states in the
spectrum, formula (2.18) is valid too. The expression for P* can be obtained from (2.15)
by setting formally ng = n, + 1 = 0, which gives
d P (B o i
—i— log[ ( )} = g&f dx cos (218;:) Sm[T(A +2§/n)x.
Ro(8) T Jooo m =/ 2sinhxcoshix

7 (2.19)

Note that if 25 /7 > 1, the integral in (2.19} diverges. Finally, we complete this list by the
following two expressions:

d PE (8) d PE@®)] o2a gt 250x
i 1 MR —_ __-_____ -ﬂn I
a6 " g[ Ro®) 8| ey | T f_m & °°S( 7 )
y [sinh((z.f/zr) — 2R, — 2)x 2coshxsinh((2 /) + 2N — A — l)x
sinh x _ 2 sinh x cosh Ax

) (2.20)
For the integral representation of Ry see [6)].
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3. Exact solution of the regularized boundary sine-Gordon model

3.1. The XXZ chain with boundary magnetic field

The XXZ model in a boundary magnetic field

2x51ny[z(“ o +07 075 + Alofof — 1))+h(ori‘—1)+h’(a§—1)] (3.1)

was discussed in [11], where its eigenstates were constructed using the Bethe ansatz. As
usual, these eigenstates {|n) = E|n) are linear combinations of the states with rn down
spins, located at xi, ..., x, on the chain

[r) = Zf(“)(xl, ...,x-,,)lxl, ceeaXnh
Consider for simplicity- the case # = 1. The wavefunction U (x) reads [}1]:
@ =7 + (¢ — A))emEE — (e > k)

sinh iy +a) 1" siny sih L +iyH")
- sinh $(iy — @) sin $(y + y H")

- —- 3.2
sinh %(iy — ) @ -a)  32)

where we defined the new variables as in [111: A = —cosy, £ = flw, ¥)

h—isiny

yH = f(iy,—ilnk — A)) = —y —1iln m (3.3)
(and similarly for H’), and
ink 1 (i6 — :
fla, by = —iln w - (3.4)
sinh 5(ib + &)

When h varies from 0 10 +o0, y H increases monotenically from —z — p to —) according
to (3.3) if we take the main branch of the logarithm.

Denote by, = 1 — cosy. This ‘threshold’ value of £ corresponds to y H = —m;
its meaning will become clear below. When £ varies from —oo to 0, ¥y H increases
monotonically from —y to m — y. For the purposes of the present work we confine our
attention to the region #, £’ > 0 and choose y € (0, Z). Other regions in the parameter
space can be obtained using the discrete symmeiries of the Hamiltonian (3.1): % —» —o?
on each site or on the odd sites only. The parameter & in (3.2} is not arbitrary, but satisfies
the Bethe equation [11]:

S2L-2k (€% +h — A)e* + 2 — A)

€k +h— A k+h — D) @)
or
sinh (@ —iy)|"" sinh Lt — iy H) sinh L(@ — iy H) _ 56
sinh (e +iy) | sinhl(x+iyH)siohi(e+iyH) '

Note that the wavefunction (3.2) depends on H implicitly through the solution of the Bethe
equation (3.6) a(H, H'). Besides, one can multiply the amplitude (3.2) by any overall
scalar factor depending on «, L, H, and H'. The Bethe equations in the sector of arbitrary
#n > 1 can be found in [11].
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3.2. The Bethe equations for the inhomogeneous XXZ chain

The real object of interest for us is actually the inhomogeneous six-vertex model with
boundary magnetic field on an open strip. The inhomogeneous six-vertex model is obtained
by giving an alternating imaginary part 1A to the spectral parameter on alternating vertices
of the six-vertex model [12, 13). It was argued in [6], generalizing known results for the
periodic case [13] that this model on an open strip provides, in the scating limit A, L — 00,
lattice spacing— 0, a lattice regularization of (1.1) with 82 = 8y and a value of @y at the
boundary related to the magnetic field. The reader can find more details on the model in the
references; it is actually closely related to the XXZ chain we discussed above. In particular,
the wavefunction can be expressed in terms of the roots ¢; of the Bethe equations [11, 12]

L
sinh 3 (& + A — iy) sinh 5(ey — A —iy) | sinh 3@ — iy H) sinh (o5 — iy H')
sinh 1 (& + A +iy) sinh Sy — A+1y) | sinh 2oy + iy H) sinh § (e + iy H')
_ H sinh § (o, — @ — 2iy) sinh Mo + o — 2iy)

— 2T )
sinfi 5 (0; — @ + 2iy) sinh 5(0; + ap + 2iy)

m#j

By construction of the Bethe-ansatz wavefunction, Ree; > . Note that the solutions of
(3.7) o; = 0, im should be excluded because the wavefunction vanishes identically in this
case. The analysis of solutions of (3.7) is very similar to the case of the XXZ chain in
a boundary magnetic field. We consider the regime 0 < ¥ < m/2, which falls into the
attractive regime 0 < $* < 4 in the sine~Gordon model {1.1). We set hereafter ¥ = x/t
and for technical simplicity restrict # to be a positive integer. In the limit L — oo this
constraint implies that in the bulk only the strings of length from 1 to ¢ — 1 are allowed.
along with the anti-strings. .
Taking the logarithm of equation (3.7), one obtains

LIf(@+ A, p)+ flog — A, )]+ floy, v E) + fley, v H')
=2l + Y _[Fley = otm, 27} + Floy + e, 29)] 3.8)
m#;
where [; is an integer. We also recall the formula for the eigeheuergy associated with the
roots oy [11,12],

E—T (il + Av)+ Flloy— A )] (39

&

3.3. Thirring model with boundary

Since the bulk sine—Gordon model is a bosonized verston of the bulk massive Thirring

model, one can expect that the boundary sine-Gordon model is a bosonized version of
the Thirring model with cerfain boundary conditions. The quickest way to identify this

boundary Thirring model is to use the Bethe ansatz equations (3.7). Wrmng the most

general U/(1}-invariant boundary interaction,

Hy = f dx [—iy{ Wy + 195 o + mo 2 + moyt ¥+ 2g0v T v V]
+Y @y ¥ O+ Y ajut ). : (3.10)
T i
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The entries of the 2 x 2 matrices A = {a;;}, A" = {g];} can be determined up to one
arbitrary parameter ¢ by the hermicity of Hr and the consistency of the boundary conditions
(det A = 0). Far the left boundary, the matrix A looks like

1 (e 1
A_Zsincp(l ci¢) @10

and the boundary condition reads ¥ (0} = —e*®¥2(0) (and similarly for the right boundary).
To find the eigenvectors of the Hamiltonian (3.10), Hx¥ = EW, one c¢an use the
same wavefunctions as for the bulk Thimring model [14], and modify them by analogy with
the example of an XX7Z chain in a boundary magnetic field [11}. This way one gets the
equations for the set of rapidities o;:
cosh 3 (o + i¢) cosh 1 (a; + i)
cosh 1(c; — ip) cosh L (e — i)
. 1—[ sinh %(ar,— - o, — 217} sinh %(aj + o — 2iy)
oy Sinh Loy — ot + 2iy) sinh ${oy + o + 21y)

eZimoL sinh ey =

(3.12)

where ¥ is related to go in the usual way [14]. These equations look quite similar to
(3.7). The mapping can be made complete by taking the limit A — co in (3.7) with the
identification mg = 4e~» siny.

The derivation of these equations is rather cumbersome, therefore to illustrate the
procedure we comment on the simplest case of a one-particle sector, which is nevertheless
sufficient to obtain the form of the boundary terms in (3.12). We make an ansatz
W= foL dy x*(»)¥;T ()]0}, where A is the spinor index, x(y) is the wavefunction, and
10} is the unphysical vacuum annihilated by 9.

The equation Ht¥ = £ reduces to

. d
—ios—x + moo1x + Axd{x) -+ Axs(x ~ L) = Ex. (3.13)

where o; are the Pauli matrices. We look for the solution of (3.13) in the form
—f2N . a2 . .
(;{;) = a(@) (ee’m‘{2 ) gimpsinha _ a(~a) (:;wz) aimpxsinha (.14)

Substituting it into (3.13) we get E = mpcosh o and, besides, two boundary conditions to
.be solved. The first one, at x = 0, determines the form of the factor a(e) = cosh %(a — i),
while the second one, at x = L, gives rise to the Bethe equation

cosh 3o + i¢} cosh § (¢ -+ i)
cosh §(a — i¢) cosh 3 (& — i)

which determines &. Comparing the Bethe equation (3..7) with (3.12), and using the relation
between & and H obtained below in section 3, we find the relation between the boundary
parameters ¢ and o in the Hamiltonians (3.10) and (1.1) respectively:

¢ = Beo — B*/8.

Thus, the integrable boundary condition for the U(1)-invariant boundary Thiming model
equivalent to (1.1) reads:

$2(0) = —e#/8- 1y (0. (3.15)

It would be interesting to obtain the result (3.15) directly from the Hamiltonian (1.1}
using an extension of the Coleman—Mandelstam bosonization technique to the case with

eZlmgL sinha —
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boundary. However, to our knowledge such an extension has not been developed yet. The
naive application of the known Coleman—Mandelstam “bulk’ formulae does not give the
factor e#*/8 in (3.15), which seems to be some kind of ‘boundary anomaly’ (see [23] for
the related discussion).

4, Solutions of the Bethe ansatz equations with boundary terms

As is well known in the case of the bulk Thirring model or equivalently the periodic XXZ
chain, the bound states are associated with various types of solutions of the Bethe ansatz
equations involving, in general, complex roots [14]. By analogy, we expect the boundary
bound states to correspond to new complex solutions made possible by the boundary terms:
technically, these terms change the asymptotic behaviour of the left-hand side of the Bethe
ansatz equations {3.7), allowing solutions different from the nsual strings, and ‘rooted” on
a H dependent basic root.

Consider first the simplest example of the XXZ chain with one spin down as given in
section 3.1 and (3.6). Since our goal is to study purely boundary effects, we will look for
the solutions of the Bethe equations that give rise to a wavefunction localized at x = 0
or x = L and exponentially decreasing away from the boundary. The states described by
such wavefunctions will be referred to as the ‘boundary bound states’ below. For this, one
should have o purely imaginary in (3.2). We consider here the limit of L large, when the left
and the right boundaries can be treated independently and the overlap of the corresponding
wavefunctions is negligibly small (for the physical applications it is necessary to take the
scaling limit anyway). In the limit L — oo, it is easy to check that there are two such
solutions to (3.6): o = iog = —iyH +ie(L, H, H') and @ = ioy = —iy H' +i'(L, H, H'),
where & ~ exp(—2« L) and we defined & > 0 as

sin $(—y H — )

sind(—yH +y)

{similar relations are assomed for &/, "), Solution o, gives a wavefunction (3.2) localized
0

at x = L: fO(x) ~ e ¥ Solution o gives a wavefunction localized at x = 0,
FOB(x) ~ e+, provided we renormalize the wavefunction (3.2):

fO — fOsinh L (@ — iy H) sinh Lo + iy H)] V2, - @4

In the special case H = H', there is only one proper solution « = iafp = —iy H -+ie(L, H)
with & ~ exp(—«L). The wavefunction (3.2) behaves as the superposition of the ‘left’ and
the ‘right’ boundary bound states, £ ~ (e7%* 4 e=*(*—*)} Note that the boundary bound
state appears in the above example only when the boundary magnetic field is large enough:
namely, # > kyt. This follows from the fact that o should be such that 0 < oy < 7.
Now consider the general case of the inhomogeneous model (3.7). The basic boundary
one-string solution to (3.7) is still @ = iwg = —iy H + ie, provided that 0 < oy < 7.

e =

{ More generally, the criterion of existence of boundary bound state solutions allows us to determine threshold
fields for any A. For this, let vs examipe (3.5). The parameter & is defined modulo 2w, therefore we restrict k
to lie within & € (0, 2). Two possibilities, £ = ia and k¥ = & + iz where a > 0, lead to two different threshold
fields, determined by the fact that the denominator in (3.5) should vanish:

B =a+1 pP =n-1

and the regions where boundary bound states could in principle exist are & < A — 1 and & > A 4 1 (one has to
be careful here and check that these solutions of BE indeed correspond to the stable states of the model), When
A > 1, there are two different threshold fields, in agreement with the results of Jimbo et af [15]. In the region of
interest, {A{ < 1, there is only one threshold field hf,:).
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This solution is possible due to an argument very similar to the one used in the bulk: as
L — ©0, the two first texms of (3.7) decrease exponentially fast, while the third increases
exponentially fast, and € ~ exp(—2x L) with

o _ Sh*(A/2) + sin® (o — y)/2)
" sinh%(A/2) + sin®((eo + 7)/2)

Recall that for the bulk problem when there is no boundary term, the right-hand side of (3.7)
would have to decrease exponentially, forcing the existence of a “partner’ root at & — 2iy.

One can construct similarly boundary n-strings which consist of the points iwg, iag +
2iy, ..., lag+2i(m — 1)y (see figure 1). By convention, # = 0 means there is no boundary
string, i.e. all complex solutions are in the usual bulk strings. The possible values of
n are restricted by the fact that the upper point of the complex should be below im:
max(n) = [(® — o)/2y] + 1, where the square bracket denotes the integer part. To
show that the boundary r-string is indeed a solution to (3.7), we introduce infipitesimal
corrections g; to the positions of the points of the complex [16]. Taking the modulus of
both sides of (3.7) with «; = it -+ 2iky and multiplying equations for k =0,...,n~1
we obtain exp{—2L(x| + k2 + - - - + &)} ~ &1, where g, denotes the correction to the point
ictg. The behaviour of the remaining &; follows from ¢, by recursion. For example, for the
two-string g2 is given by |e; — &2 ~ exp(—2L«2)t.

4.2)

‘ T o
F1': Dirac seq

T T T T T T YT rYT—

b iy + 121y
P

>

b :
b 1o, Ly
b 1ag - 21y
riua

- Re o

Tigure 1. The first type of boundary string. In the ground state the boundary string of maximum
allowed length is occupied.

Additional boundary strings can be obtained by adding the roots iy below icp so that
iy = iog — 2isy, with s = 1,2,..., N (see figure 2). Together with the boundary n-
string above «p, they form the complex which we call the boundary (n, N)-string. To
analyse the existence of such complexes as the solutions of (3.7) we introduce as before the
infinitesimal corrections &, to the roots ¢, wherenows =n,n—1,...,1,-L, -2,...,—N.
Then, equations (3.7) with «; = iw, tell us that the range of N should be

s 7 7 +op

— < N 43
In other words, the inequality (4.3) states that the lowest root of the boundary string should
be below the axis Ime = ) and above the axis Imo = —x. Another constraint follows

1 Note that, associated with each boundary n-string, there is also the solution to (3.7) obtained by complex
conjugation of all &’s. The existence of such a ‘mirror image’ is the consequence of the symmetry of equations (3.7)
and it is of no importance to physics. In the bulk case, it is easy to show [17] that all solutions are invariant under
complex conjugation, but this result does not hold here. In fact, a solution which has both the boundary n-string
and its mirror image would iead to a vanishing wavefunction.
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Figure 2. The second type of boundary string.

if we multiply equations (3.7) for all the roots of the boundary (r, Nj-string. This gives
exp(—2L ¥ k,) = &;. So, one should have }_ «, > 0. The latter sum can be easily evaluated
if one uses expression (4.2) simplified in the limit A — oco: k = 4e*siny sinoy. The
constraint obtained in such a way forces the number of roots above the Ima = 0 axis in
the boundary string to be greater than the number of roots below Ima = 0.

We have not been able to find any reasonable additional solution to the Bethe ansatz
equations. The two sets of boundary strings we have encountered appear to be in one-to-one
correspondence with the boundary bound states identified in section 2 using the bootstrap
approach. To clarify this identification we now compute related masses and S-matrices.

5. S-matrices and bound state properties from the exact solution

5.1. Bare and physical Bethe ansatz equations

The ‘bare’ Bethe equations follow from taking the derivative of (3.8). Defining 2L (p; +
o¥)dar to be the number of roots in the interval de, one obtains coupled integral equations
for the densities of strings py, ..., 0:—; and anti-strings p,:

7—1
) 1
2o+ pf) =3Py — Fra® Pa— Y fuy %o+ A ) — o f
l'=]
A - : (5.1)
2e(pa+ P = =3P+ ot ) fux ot op et o+ o 1)
I=1

where x denotes convolution:

(=0

rre@= [ dp - P
-

These densities are originally defined for & > . But the equations allow us to define

pe(—a) = pp(e) in order to rewrite the integrals to go from —co to co. If we totally

neglect the boundary terms (terms~ L™!) in (5.1), we will end up with the same equations

as for the periodic inhomogeneous six-vertex model [12]. The various kernels and sources
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in (5.1) are defined as follows:

pa@) = fiw + @+ A, ¥} + flx+a—A,p)
pele) =) flo + A7)+ Fl— A, v)

where the sum in the last expression is taken over the rapidities of the bulk %-string roots
centred on o.

The kernels fi; are the phase shifts of the bulk &-string on the bulk I-string obtained by
summing (3.4) over the rapidities of string roots. The boundary terms are:

ua () = =220, 2y) — f'(e +im, y H) — f'{o +im, y H') — 28 (et)
wile) = 3 _12F (201, 2) + (et v H) + f'les, v H')] — 278(c0)

Q@

(the sum above is over the roots of the bulk %-string centred on o),

FER @) =3 Flir+ o — o, 20) + Flim + o+, 27)

@,

and o; denotes the rapidities of the roots in the boundary n-string.
P =33 floy —en 29) + floy + i, 2)

o o

where ¢; denotes the roots in the boundary r-string, while o; denotes the roots in the bulk
k-string centred on . The parameters w, o' are equal to 1 or 0, depending on whether the
boundary string is present or not. In our ferromagnetic case the ground state of the periodic
inhomogeneous XXZ chain is filled with anti-strings, The physical Bethe equations are
obtained [18, 19] by eliminating the ‘non-physical’ density p, from the right-hand side of
(5.1). This is done simply by solving for p, in the last equation in (5.1) and substituting it
into the others. The result is

! I
2o+ o) = 3P0 + 15 f""f, Putt gt 2mpg
f k 1
- Z (fkf i % 0+ 0 2L L’rl'l.ﬂ-".jc (5.2
ZJTP f, —1 4 1
I3 L b i
2Py + Py) = —757 _‘;ﬂ -5 7 * 210, +; 7 i 7 * 2o + EUn,n’;a
where
1y + 0f (D) o fI0
Un'nf;a = 2 27{ f’ (5.3)
Ui = g — 0f i — &' i) = Fi % Unwia /270 G4

and different products (ratios) of kernels are defined through their Fourier transforms.

5.2. The mass spectrum of boundary baund states

We assume first that the ground state is built by filling up the Dirac sea with anti-strings, as
in the case of the periodic XXZ chain. We will see below that this is not always true, The
presence of the boundary strings in the Bethe equations deforms the distribution of roots
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and modifies the density of the Dirac sea p, by a term 8p, /2L of order L', With the
boundary n-string, the Bethe equation for the density of the Dirac sea particles g, is

i 1 +oo - - 1
-Z'P;(Of) - ﬁ“ua(“) = - Fle = P)p(B)dB — 27 Pa(er) + 'ifé(d) (5.5)
where f, was defined above. Subtracting from (5.5) the equation for the density of the
Dirac sea alone,

1 1 oo | :
—ph(e) — —n,(e) = o — B)pa(B)df — 2mpa(ce) (5.6)
2 2L —ce
one obtains the equation for 8p,:
+00 . _
=—f Fle = BYopa(B) B + 28pu(e) — Fi(t) 57)

80s = 2L(Ps — pu)-

The solution to (5.7) can be written in terms of the Fourier transform 85,(k) =
f dor e¥%3p,(cx) as follows:

. fiky - :
(k) = —Bo——, 5.8
8520k) P E (5.8)

From the boundary n-string icg + 2iys, s =0, 1,...,7 ~ 1, we obtain

4 cosh yk sinhnyk cosh{og + vr — ¥)k
vid -
sinhk }
2cosh yk sinhnyk cosh(eg + yn — )k
sinh v cosh(m — y)k o

Fley = -2 (5.9

8palk) = — (5.10)

where we use
n sinh(m — 2y)k
k) = 2 —————, . . - ;
F® 4 “sinhrk
Expressions (5.9} and (5.10} are valid for the n-strings withn = 1,2, ..., [+ H) /2]. For
the longest n-string with » =[(¢ + H)/2] + 1 = n. + 1 the Fourier tansforms f/,, 35,
differ from (5.9) and (5.10):
- 2sinh(mw — 23 )k coshleg + 2yn, —m)k
sinhmk
o 4 cosh vk sinh n. vk cosh(cg + v 1. — y)k
sinh wk
sinh(r — 2p)k cosh(eg + 2vn, — )k
sinh ykcosh(m — y}k
_2 cosh vk sinhn, vk cosh(eg + v i — ¥k
sinh y& cosh(m — )k ’

=2

(5.11)

8pa(k} =

(5.12)

The conserved U(1) charge in the boundary XXZ chain is the total projection of the spin
on the z axis. In the thermodynamic limit the charge of the boundary n-string with respect
to the vacuum is determined by [11]:

400

+00 +o0
O.=n +f 2L5, do — f 2Lp,de = n + %f Spuder =n+185,(0).  (5.13)
0 Q

-0
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Using (5.10) we obtain for the n-string @, = 0, and for the longest boundary string
equation (5.12) yields @, = m/2y. Similarly, the mass of the boundary strings in the
thermodynamic limit according to (3.9) is given by

+e0 +oo +o0
My = by + f 2L fuhg do — f 2Lpuh, da = hy + % f ho8p, dor (5.14)
[+ 0 e
where the expression for £, is
. T—y 2sinh yk cos Ak
Bo(k) = —— = 2w — ) —
«(6) 7t (=7 sinh 7k
and the soliton mass {12]
m=2ex l:_:j_m'_]
Plae —» )
We obtain in the limit A — o0
tn = m [sin 220 —1— H) +sin—(H + 1)] (5.15)
2 2
. T
M, = ntsin ﬁ(H-}-D' {5.16)

Since the parameter H varies in the interval —A — 1 < H < —1, the mass of the longest
string m. (5.16) is always negative, while the other boundary strings have positive masses
(5.15). This means that the vacuum we have been working with is an unstable one in the
region —t < H < —] (A > hy). To cure the situation we define a new correct ground state
by attributing the longest boundary string to the Dirac sea. The boundary excitations are
obtained by successive removing of particles from the top of the longest boundary string.
The charge and mass of such excitations with respect to the correct ground state are given

p = —— mn=mcos%(}\.+rl+hf-2n) n=0,1,..., 1. (5.17

Note that the number of excitations (5.17) is equal to the number of roots in the longest
boundary string, #. + 1. The charge of such boundary excitations is equal to the charge of
the hole in the Dirac sea. We identify a hole with a sine—Gordon scliton, and the boundary
excitations described above, with the boundary bound states |8,} (2.3). Their masses and
charge {5.17) and the counting coincide provided that

z+H+1=% (5.18)

and the lattice charge Q@ is properly normalized. This expression is in fact valid for all
values of & > 0. The anthors of [6], deriving this relation in the region £ < hw, obtained a
different expression because they used a different branch of logarithm in (3.3).

In the above discussion we considered the boundary bound states related to one of
the boundaries (say, the left one). In principle, one should include in the ground state
the jongest boundary string iy + 2iyt, [ = 0,1,...,[{t + H)/2), comesponding to the
right boundary as well. The energy of the excitations due to both boundary strings is a
superposition of energies of the form (5.17). When H = H', these two boundary strings
overlap and the usual Bethe wavefunction vanishes. However, on physical grounds we do
not expect anything special to happen when the boundaries are identical. So, in such a case,
one should use as a wavefunction a properly renormalized version of the limit H — H' of
the usual Bethe wavefunction.
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When the magnetic field varies, the above picture indicates a qualitative change in the
structure of the ground state at values H = —r, —t + 2, —t + 4, .... At these values, the
mass of the bound state with the highest mass approaches the soliton mass and it becomes
unstable. As discussed in [20] and {4] for the Ising case, this decay corresponds to large
boundary fluctuations that propagate deeply into the bulk,

The mass of the boundary (n, ¥)-string with respect to the correct vacuum can be
calculated analogously, The result is

_ E = f,—‘A 2n+1 £ 2N-1
mn,N_n_ncos(I Ty + mcos Py e 1 CoS }L+ o T (3.19)

where we used (5.18) to express A in terms of §. This result is rather confusing to us,
because the above mass does not correspond in general to one of the bound state masses
found in the bootstrap approach. It can be considered as a sum of such masses, hinting
that the (n, N)-string describes actually coexisting bound states, but the calculation of the
corresponding boundary S-matrix does not allow such an interpretation. We are forced (but
see the conclusion) to consider that only the (n, N)-strings with n = n, + 1 occur, that is
the physical excitations are built by adding roots to the ground-state configuration below
ioyg. The charge and energy of such excitations with respect to the correct vacunm is given

by

QN=2E;—2L;=O mszcos(iui)—mcos(§-+ = ljr). (5.20)
These coincide with the charge and mass of the boundary bound states |89 »} (2.10). The
range of N (4.3) agrees with the range of the corresponding parameter in (2.9).

5.3. Boundary S-matrices

It remains to check that the boundary S-matrices obtained by the bootstrap approach
coincide with those of the lattice model. To extract the boundary S-matrices from the
Bethe equations we will follow the discussion of [6]. Briefly, the idea of the method is as
follows. The physical excitations of the lattice model in the limit A — co can be thought
of as relativistic quasi-particles with rapidities 8;. The integrability implies that the set {8;}
is conserved. Moreover, if the scattering matrices are diagonal, each particle preserves its
rapidity. Assuming that this is the case, the quantization of a gas of A quasi-particles on
an interval of length L results in the integral equations for the set of allowed rapidities [6]:

1
2 (pp + p,,) = m, coshd + Z Ope * P + L — @) (5.21)

c=1

where the subscript stands for the type of pgrtrcle, and .

Ppc(8) = —iﬁdg In Spe(&)
(5.22)

@,(0) = _iada In RjH (8) — i 4 RE® @) + 1_9 In Sps(26) — 278().

Equations (5.21) should be compared with the physu:a] BE (5.2), which gives bulk and
boundary S-matrices. We will confine our attention to the boundary S-matrices only, keeping
track of those terms in (5.3), (5.4), and (5.22), which depend on the boundary magnetic
field (the field-independent terms contribute to Ry and their agreement has been shown in
[6]). The discussion for the left boundary is completely parallel to that of the right one.
Also, it is sufficient to consider only & = soliton and & = anti-soliton in (5.21). We identify
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a hole in the anti-string distribution in (5.2) with a soliton in (5.21), and (¢ — 1)-string with
an anti-soliton. Below we give explicit expressions only for the kernels in (5.2) which we
need for our analysis. The other expressions are listed in [6].

Suppose first that & < Ay (—f — 1 < H < —t). This corresponds to the case without
boundary excitations in the spectrum, § < 7/2. Choose w = @’ = 0 in (5.2). Then

ﬁfzm(k) _ 2nysmh(?.:ﬁr +yH)k +

sinhmk
(we omit the H-independent and H’-dependent terms),

2 sinh yk cosh(mr — )k
Using (5.22) we compare this expression with (2.19) (recall that the rapidity « should be
renormalized o —> 8 = ta/2)) and find complete agreement under the identification (5.18).
Similarly, one can use
=17 sinh 7k sinh vk
D _on sinh(2 -+ H)yk
2sinh vk cosh(zw — v)k

to compare U/,_; with (2.18) and obtain agreement as well.

Next, suppose that # > hy (—f < H < —~1) To obtain the boundary S-matrices for

scattering on the ground state [0)p set @ = @’ = 1 and choose the boundary string to be
the longest string, n =, + 1 in (5.2). Then, using (5.11), ', 41,1 = —f, and

inhy Hk
ﬁgL) o Sl Y

sinhwk
ﬁff)] — a0 _2x sich(H + 2[{1 - H)/Z])yk (5.23)
sinh ¥k
we obtain
A _ sinh y Hk sinh( — 2y )k cosh(H +1t — 2n,)yk
2 2sinh vk cosh(m — v)k sinh yk cosh(mr — )k
2cosh yk sinhn, pkeosh(H — n, + 1)yk +

sinh yk cosh(mr — ¥)k

sinh(H + 2[(1 — H)/2])vk
052 s = 08 =2 T SE IO

sinhyk

which agrees with (2.15) and (2.18) under the identification (5.18). Note that the last
relation, which follows directly from (5.3), (5.4}, and (5.23), is valid also for UM and
Un.,_1 with any #. In the same manner one can calculate the boundary S-matrices for
scattering on the boundary r-strings and check that they indeed coincide with (2.16) and
(2.17) under the condition {5.18). For this, one needs to take w = &' = 1 in (5.2) and use
(5.9), f:; _ = £!. Finally, one can compute also the boundary S-matrix for the scattering
on the (. + 1, N)-strings, again in agreement with the bootstrap results.

6. Conclusion

The question of boundary bound states even in the simple Dirichlet case appears rather
frustrating: using the XXZ lattice regularization or equivalently the Thirzing model, we
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have only been able to recover the B, and §,=¢ v boundary bound states. A way out is to
consider solutions of the Bethe ansatz equations made of an (r, N)-string superposed with
the {n, + 1)-string that describes the ground state. This is not allowed in principle, in the-
model we consider, because the Bethe wavefunction vanishes when two roots are equal.
However, putting formally such a solution in-the equations gives the masses of the &,y
states and the S-matrix also matching the bootstrap results! But the meaning of this is not
clear to us.

Finally, let us mention that one can calculate the ground-state energy in the
thermodynamic limit by solving equation (5.5) for the ground-state density and using (3.9):

+oo
Eg= fo 2L o) hic) dev.

As aresult, we get the combination Ey = Eyuk + Evoundary, Where Epyyy is the well known
sine—Gordon ground-state energy [21]

' Lm? Ty
Erulk = — t
bulk p art 27— )
and Epoundary is the contribution of the boundary terms (A — oo):
m [sin[(H +2yx /2w — y)] =?
E o 1 f—1.
boundary == [ s 22—y % am =

‘We see that the ground-state energy of the boundary sine—Gordon model is a smooth function
of the boundary magnetic field for the whole range of 4 in the XXZ regularization, hence
of ¢g. The changes in ground-state structure do not affect E, as is expected since in such
a unitary model there is no {one-dimensional} boundary transition.

The finite size corrections to the ground-state energy themselves (the genuine Casimir
effect) can be computed using the technique developed in [21]. It is also interesting to
consider the inhomogeneous six-vertex model with an imaginary boundary magnetic field
ensuring commutation with. U,s{(2) [22]. This should presumably lead to a solution of
minimal models with integrable boundary conditions, We will report on these questions
separately [24].
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