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Abstract. We present a complete study of boundary bound states and related boundary 
S-matrim for the sine-Gordon model with Dirichlet boundary conditions. Our approach is 
based partly on the bootstnp procedure and partly on the explicit solution of the inhomogeneous 
XXZ model with boundary magnetic field and solution of the boundary Thirring model. We 
identify boundary bound states with new ‘boundary strlngs’ in the Bethe ansatz. The bouna‘q 
energy is also computed 

1. Introduction 

The sine-Gordon model with a boundary interaction preserving integrability (which we 
shall call the boundary sineGordon model) is of theoretical as well as practical interest. 
In particular, it exhibits relations with the theory of Jack symmetric functions [l] and has 
applications to dissipative quantum mechanics [2] and impurity problems in 1D strongly 
correlated electron gas [3]. 

In the seminal work 141 it appears clearly that this problem presents an extremely rich 
structure of boundary bound states, which has been partly explored in [5]. Our first purpose, 
here, is to study this structure further in the particular case of Dirichlet boundary conditions, 
which is the model 

with a fixed value of the field at the boundary, q ( x  = 0, t) = YO. 
Also, the consideration of boundary problems poses interesting challenges from the point 

of view of lattice models, or in this case lattice regularizations of (1.1). In [6] and also in 
[7] it was shown, in particular, how to derive the S-matrices of [4] from the Bethe ansatz. 
Our second purpose is to complete these studies by investigating which new types of strings 
correspond to boundary bound states, and by also deriving the set of S-matrices necessary 
to close the bootstrap. Note that lattice regularizations are useful when defining what one 
means by creating a bound state at the boundary. Indeed, some bound states (showing up 
as the poles of S-matrices) have no straightforward interpretation, and although they are 
easy to study formally using the Yang Baxter equation and the bootstrap, their meaning in 
the field theory is unclear. 

5 Packard Fellow. 

03054470/95/236605+18$19.50 @ 1995 IOP Publishing Ltd 6605 



6606 S Skorik and H Saleur 

In section 2, we consider the bootstrap problem directly in the continuum theory. 
We identify boundary bound states q d  we compute the related boundary S-matrices. In 
section 3, we write the Bethe ansatz equations for the inhomogeneous six-vertex model with 
boundary magnetic field, which is believed [61 to be a regularization of (1.1). We show 
that these equations are also the bare equations for the Thirring model with LI(l)-preserving 
boundary interaction, which is the fermionized version of (1.1). In section 4, we discuss in 
detail new solutions ('boundary strings') to the Bethe ansatz equations made possible by the 
appearance of boundary term. In section 5, we study the physical properties of the model, 
in particular the masses and S-matrices corresponding to these boundary strings, and we 
partially complete the identification with the bootstrap results of section 2. Several remarks, 
in particular formulae for the boundary energy of the boundary sine-Gordon model, are 
collected in the conclusion. 

2. Boundary bootstrap results 

2.1. Solving the boundary bootstrap equations 

The S-matrices for the scattering of a~soliton (Pf) and an anti-soliton (P-) on the ground 
state 10)~ of the sinffiordon model with Dirichlet boundary conditions (1.1) were obtained 
in [41: 

(2.1) P*(0) = COS(: i Au)Ro(u)Ri (U, 5 )  
where 8 = iu is the rapidity, 5 = ~4n'po/B and A = 8n/B2 - 1. The explicit form of 
&, R I  is rather cumbersome and can be found in [4]. Since the theory is invariant under 
the simultaneous transformations k -+ -5,  and soliton-+anti-soliton, hereafter we choose 
6 to be a generic number in the interval 0 e t < 4nz/B2 (see the discussion in 181 about 
the value of the upper bound). 

The function Ro contains poles in the physical strip 0 e Im8 < 7112 located at 
U = nn/2h, n = 1,2, . . . e h. These poles come from the corresponding breather pole 
in the soliton-antisoliton bulk scattering, and should not be interpreted as boundary bound 
states 141. 

When 5 z n/2,  the function Pf(0) has additional poles in the physical strip, located 
at u = U, with 

2 n + 1  iz 
o < v  n e -  

" - A  2A 2 
(n = 0, I,?.,. . .) corresponding to a first set of boundary bound states which we denote by 
I@,,), with masses 

m, = mcosu. =mCOs - - - (: 2nz:1n> (2.3) 

where m is the soliton mass. For 
0 e 'po e n/,B the ground state of the theory i s  characterized by the asymptotic behaviour 
(p -+ 0 as x -+ CO, but other states, whose energy differs from the ground state by a 
boundary term only, can be obtained with 'p + [a multiple of Zn/B) as x + W. Since the 
fin appear as bound states for soliton scattering, they all have the same topological charge 
as the soliton, which we take to be equal to unity by convention, so they are all associated 
with the same cIassical solution, a soliton sitting next to the boundary and performing a 
motion periodic in time ('breathing'). with 'p(x = 0) = 'po and (p -+ 2z/p as n -+ 00 [SI. 

These bound states are easy to interpret [4,8]. 
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To deduce the scattering matrices on the boundary bound states we use the 'boundary 
bootstrap equations' as given in [4]. We assume that these S-matrices are diagonal, which 
is true if all the boundary. bound states have different energies. In this case the bootsmp 
equations read 

R@) = R,d(e)s:j(e + iu!o)Sg(e - i&. (2.4) 
c.d 

These equations allow us to find the scattering matrix of any particle b on the boundary 
bound state 6 provided that the latter appears as a virtual state in the scattering of  the^ 
particle a on the boundary state a. ' The masses of the corcesponding boundary states axe 
related through 

mg = m, + m, cos u ! ~  (2.5) 

where iu&, denotes the position of the pole, corresponding to the bound state B. 

Then (2.4) gives 
Let p,, stand for the nth boundary bound state corresponding to the pole U, in P' (2.2). 

(2.6) 
(2.7) 

where the well known bulk S-matrix elements a@) = SI: = SI: (kink-kink scattering), 
b(6') = S$: = SI: (kink-anti-kink transmission), and c(0) = S;: = S:; (kink-anti-kink 
reflection) can be found in [9]. 

It is easy to check that the matrix elements (2.6)-(2.7) satisfy general requirements 
for the boundary S-matrices, such as boundary unitarity and boundary crossing-symmetj 
conditions [4]. e.g. 

$(e) = P+(e)a(s - iu,)a(@ + iu,) 
Pi(€!) = b(8 - iuJb(0 + iv,)P-(e) + c(e - iu,)c(8 + iu.)P+(e) 

p;(e)p;(-e) = 1. 

Finally, we obtain from (2.6)-(2.7) by direct calculation 

Hence the boundary Yang Baxter equation is satisfied, since the ratio of the above two 
amplitudes has a form similar to (2.1) with f + 6 - A n ,  ( being a free parameter. 

The analytic structure of Pi(@ is as follows. The function PL(6) has simple poles in 
the physical strip located at U = ((/A) + ((ZN + 1)/2A)r, N = 0, 1,2, . . ., and at U = u.. 
It has double poles at U = iu,, + ikn/A, k = 1,2, . . . , I t .  The function P i ( @  possesses in 
the physical strip the same singularities as Pi(@) plus the set of simple poles at U = zuN 
with 

Interpreting these poles in terms of boundary bound states requires some care: First, due 
to the relation (2.4), one sees that if 6 appears as a boundary bound state for scattering of 
a on U, then the pole+ of the amplitude for scattering of b on a are also in general poles of 
the amplitude for scattering of b on B.  It seems unlikely that these poles correspond to new 
bound states, although in our case they would have a natural physical meaning, for example 
one could try to associate them with classical solutions where rp + 4n/p as x +~ 00. 

Indeed there are strong constraints coming from statistics that we should not forget. For 
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instance, at the free fermion point 8’ = 4n there is a bound state 81, but although Pi has 
again a pole at PI, the state of mass 2m8, is not allowed from the Pauli exclusion principle, 
as can easily be checked on the direct solution of the model (see section 3.3). Therefore, 
we take the point of view that the poles already present in the scattering on an ‘empty 
boundary’ are ‘redundant’. The only poles we interpret as new boundary bound states are 
(2.9) (the additional poles in P i  are related to them be crossing). We denote these boundary 
bound states I C T ~ J J ) ,  and their masses, according to (2.5) and (2.3), are given by 

S Skorik and H Saleur 

6 2 N - 1  
mn,N = m(cos v, + COS W X )  = m  COS^ A 2h 

=mX+,s in ( :+N-~- ln )  b (2.10) 

where in; = 2m sin(pn/ZA) is the mass of the pth breather, p = 1,2, .  . . c A. 
To understand the physical meaning of these new boundary bound states it is helpful to 

consider the semi-classical limit h -+ CO of the s indordon  model. As discussed above, 
the boundary bound states 8“. corresponding to (2.2). are associated with solutions where a 
soliton is sitting next to the boundary and ‘breathing’. An,incoming anti-soliton can couple 
to this soliton, and together they form a breather sitting next to the boundary and performing 
again some (rather complicated) motion periodic in timet. The WKB quantization of this 
solution [lo] should lead to I&,,N). The topological charge of the states Iann.x) is equal to 
zero in our units, or, equivalently, to the charge of a free breather in the theory (1.1). 

One can, in principle, continue to solve the bootstrap equations (2.4) recursively. For 
example, for the scattering of solitons or anti-solitons on the boundary bound states I $ , N )  
(2.9) one obtains the following S-matrices: 

PCN(8) = Pa;(8)a(8 -~iwN)a(B + iwx) (2.11) 

(2.12) 

has only one simple pole in the physical strip at U = W N ,  while P;, also has simple 
poles at U = vk. k = n+ 1, n+2, . . . , [C/A- ;I. According to the discussion below (2.9), we 
do not consider these poles as associated with new boundary bound states. Therefore, the 
boundary bootsmap is closed for solitons and anti-solitons in the sense that further recursion 
will not generate new boundary bound states. 

So far we have obtained two sets of boundary bound states (2.3) and (2.10) by 
considering all the poles in the physical strip of amplitudes for scattering a soliton and 
anti-soliton on a boundary with or without a boundary bound state. Of course we should 
also consider the scattering of breathers off the boundary. The scattering of breathers on the 
‘empty’ boundary was studied in [SI, and we refer the reader to this work for the explicit 
boundary S-matrices. By interpreting the poles of the amplitudes in [5] as boundary bound 
states, we find a spectrum of masses that look like (2.10) but with a slightly different range 
of parameters. Therefore, considering scattering of breathers off a boundary with a bound 
state does not give rise to any new poles besides (2.2) and (2.9). with in the latter case 
an extended range of values of N (for simplicity we do not give the relevant boundary 
S-matrices here). Therefore the complete boundary bootstrap is closed in principle. 

t To compute this Solution explicitly requires the use of a bulk five-soliton configuration [SI, an expression which 
is very cumbersome. 
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2.2. Integral representations of various S-matrices 

For comparison with results obtained from regularizations of the sine-Gordon model it is 
useful to write integral representations of the boundary S-matrices (2.1), (2.6), and (2.7) 
using the well known formula 

Suppose first that 1 < g/lr < I + 1 and denote 

(2.14) 

where the square brackets mean the integer part of the number. For such values o f f  there 
are n,+ 1 poles (2.2) in the physical strip, i.e. the spectrum of excitations contains boundary 
bound states. Correspondingly, there is a finite number of r-functions in (2.1), (2.6), and 
(2.7) whose arguments have negative real part so that formula (2.13) is not applicable. 
Treating such r-functions separately, we obtain the following results: 

sinh(2flx - 2n, - 2)X sinh(A - 2f /x)x]  
+ (2.15) 

sinhx 2sinhxcoshhx 

-+.log d [ - PL(;)] - - - 2h /"+m dx cos (2:) - 
d8 Roc@) T -m 

sinh(h - 25/n)x - 2coshx sinh(A + 1 + 2n - f / n ) x  
2sinhxcosh Ax 

X (2.16) 

-1-log . d [ - Pi(@)] - - - 2 1 f + m  dx cos (2:) - [sinh(2n. + 2 - ~ y / x ) x  
dB Ro(@ -m sinhx 

(2.17) 
sinh(h- 2 f / x ) x  -2coshx s i n h ( l +  1 + 2n - 2$ /x )x  

2 sinhx cosh Ax 
+ 

In the derivation of the analogous representation for P- there are no subtleties because the 
'dangerous' r-functions cancel. We get 

sinh(h - 2c/x)x 
. (2.18) 

2sinbxcoshAx 
In the region 0 < 2 c / ~  < 1, where there are no poles and no boundary bound states in the 
spectrum, formula (2.18) is valid too. The expression for P' can be obtained from (2.15) 
by setting formally na 

-+log = - 1: dx cos (-) . (2.19) 

Note that if x/lr > 1, the integral in (2.19) diverges. Finally, we complete this list by the 
following two expressions: 

n, + 1 = 0, which gives 
2hBx sinh(A + 2.$/lr)x 

de K ~ 2sinhxcoshhr 
- 

sinh((2f/x) - 2n, - 2)x 2coshx sinh(Qf/z) + 2N - h - 1)x - 
sinhx 2sinhxcoshhx , ,  

(2.20) 
For the integral representation of Ro see [6]. 
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3. Exact solution of the regularized boundary sineGordon model 

3.1. The XXZ chain with boundary magnetic field 

The XXZ model in a boundary magnetic field 

S Skorik and H Saleur 

was discussed in [Ill,  where its eigenstates were constructed using the Bethe ansatz. As 
usual, these eigenstates %In) = Ern) are linear combinations of the states with n down 
spins, located at X I ,  . , . , x. on the chain 

In) = f ‘”’(x1,.  . . , . h ~ x l ,  . . . , XJ. 

Consider for simplicity the case n = 1. The wavefunction f ( ’ ) ( x )  reads [I I]: 
f “ ) ( x )  = [e@ + (h‘- A)Je- i(L-.O - (k + -k) 

sinh &(iy +a) sinysinh&(a+iyH’) - (a + -a) (3.2) 
s inh&(iy-a)s inf (y+yH’)  

where we defined the new variables as in [ll]: A = -cosy. k = f(a. y). 

h - i s iny  
h + i s i n y  Y H = f ( i y , - i I n ( h - A ) ) = - y - i l n  

(and similarly for H’), and 

sinh f(i6 - a )  
sinh f(i6 + a )  

f(a, 6) = -iln 

(3.3) 

(3.4) 

When h varies from 0 to +CO, y H increases monotonically from -n - y to -y according 
to (3.3) if we take the main branch of the logarithm. 

Denote hm = 1 - cosy. This ‘threshold’ value of h corresponds to y H  = -n; 
its meaning will become clear below. When h varies from -cm to 0, y H  increases 
monotonically from -y to i~ - y .  For the purposes of the present work we confine our 
attention to the region h, h‘ > 0 and choose y E (0, 5). Other regions in the parameter 
space can be obtained using the discrete symmetries of the Hamiltonian (3.1): uz 3 -uz 
on each site or on the odd sites only. The parameter k in (3.2) is not arbitrary, but satisfies 
the Bethe equation [ 1 I]: 

01 

-iyH)sinhf(a-iyH’) 
+ iy H) sinh $(a + iy H’) = 1. (3.6) 

Note that the wavefunction (3.2) depends on H implicitly through the solution of the Bethe 
equation (3.6) a(H, H‘). Besides, one can multiply the amplitude (3.2) by any overall 
scalar factor depending on CY, L, H, and H‘. The Bethe equations in the sector of arbitrary 
n > 1 can be found in [I I]. 
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3.2. The Bethe equations for the inhomogeneous XXZ chain 

The mal object of interest for us is actually the inhomogeneous six-vertex model with 
boundary magnetic field on an open strip. The inhomogeneous six-vertex model is obtained 
by givicg an alternating imaginary part r t i h  to the spectral parameter on alternating vertices 
of the six-vertex model [12,13]. It was argued in [6], generalizing known results for the 
periodic case [I31 that this model on an open strip provides, in the scaling limit A, L + CO, 
lattice spacing+ 0, a lattice regularization of (1.1) with bz = 8y and a value of (00 at the 
boundary related to the magnetic field. The reader can find more details on the model in the 
references; it is actually closely related to the XXZ chain we discussed above. In particular, 
the wavefunction can be expressed in terms of the roots aj of the Bethe equations [ll, 121 

sinh +(aj + A - iy) sinh +(aj - A - iy) 
sinh ;(aj + A + iy) sinh &(aj - - A + iy) 

sinh f(aj - iy H) sinh ;(aj - iyH') 
sinh ;(aj + iyH) sinhf(or, + iyH') 

(3.7) 

I" 
sinh f (a, - a," - 2iy) sinh ;(aj + am - 2iy) 
sinh %(aj - a, + 2iy) sinh ~ ( a j  +a, f Ziy)  ' 

- 
' . I  ' .  - 

[ 
m f j  

By construction of the Bethe-ansatz wavefunction, Reaj > 0. Note that the solutions of 
(3.7) aj = 0, in should be excluded because the wavefunction vanishes identically in this 
case. The analysis of solutions of (3.7) is very similar to- the case of the X X Z  chain in 
a boundary magnetic field. We consider the regime 0 < y c a/2, which falls into @e 
attractive regime 0 < ,5' < 4a in the sineGordon model (1.1). We set hereafter y =.n/t 
and for technical simplicity restrict t to be a positive integer. In the limit L + CO this 
constraint implies that in the bulk only the strings of length from 1 to t - 1 are allowed. 
along with the anti-strings. 

Taking the logarithm of equation (3.7). one obtains 

(3.8) 

where l j  is an integer. We also recall the formula for the eigenenergy associated with the 
roots aj [ 11,121, 

(3.9) 

3.3. Thirring model  with^ boundary 

Since the bulk sineGordon model is a bosonized version of the bulk massive Thimng 
model,  one^ can expect that the boundary sine-Gordon model is a bosonized version of 
the Thirring mode1 with certain boundary conditions. The quickest way to identify this 
boundary Thirring model is to use the Bethe ansatz equations (3.7). Writing the most 
general U(l)-invariant boundary interaction, , .  

L 
XT = dx [--i@?$Ix + i@:h + m @ $ Z  + mo@$l+ 2go@L:@:W.11 

(3.10) 
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The entries of the 2 x 2 matrices A = (q], A' = {aij) can be determined up to one 
arbitrary parameter Q by the hermicity of UT and the consistency of the boundary conditions 
(detA = 0). For the left boundary, the matrix A looks like 

S S b r i k  and H Saleur 

(3.11) 

and the boundary condition reads @I (0) = -ei++z(0) (and similarly for the right boundary). 
To find the eigenvectors of the Hamiltonian (3.10). HrY = EY, one can use the 

same wavefunctions as for the bulk Thimng model [14], and modify them by analogy with 
the example of an X X Z  chain in a boundary magnetic field Ill]. This way one gets the 
equations for the set of rapidities aj: 
e2imoLsinhq = coshf(aj + iQ) cosh $(aj + iQ') 

cosh ;(ai - iQ) cosh f(aj - iQ') 
sinh f(aj - am - 2iy) sinh i(aj + a,,, - 2iy) 

X r I '  I (3.12) 
mi j  sinh z(a, -am + 2iy) sinh ;(aj +a,,, + 2 i y )  

where y is related to go in the usual way [14]. These equations look quite similar to 
(3.7). The mapping can be made complete by taking the limit A CO in (3.7) with the 
identification mo = 4e-" sin y .  

The derivation of these equations is rather cumbersome, therefore to illustrate the 
procedure we comment on the simplest case of a oneparticle sector, which is nevertheless 
sufficient to obtain the form of the boundary terms in (3.12). We make an ansatz 
Y = f;dyxI(y)@;(y)IO), where A is the spinor index, x(y) is the wavefunction, and 
10) is the unphysical vacuum annihilated by @A. 

The equation HTY = EY reduces to 

(3.13) 
a 

ax -iug-x + m o q x  + Ax&) + A'x@ - L) = E X .  

where U; are the Pauli matrices. We look for the solution of (3.13) in the form 

Substituting it into (3.13) we get E = mocosha and, besides, two boundary conditions to 
be solved. The first one, at x = 0, determines the form of the factor u(a) = cosh $(a - iQ), 
while the second one, at x = L, gives rise to the Bethe equation 

eZimoLsinhu = cosh ;(a + i$) cosh ;(a + i+') 
cosh +(a - i@) cosh ;(U - iQ') 

which determines a. Comparing the Bethe equation (3.7) with (3.12), and using the relation 
between and H obtained below in section 5, we find the relation between the boundary 
parameters Q and po in the Hamiltonians (3.10) and (1.1) respectively: 

Q = BIPO - B2/8. 
Thus, the integrable boundary condition for the U(I)-invariant boundary Thiiing model 
equivalent to (1.1) reads: 

@*(o) = -eiP/g-i+% *l(O).' (3.15) 

It would be interesting to obtain the result (3.15) directly from the Hamiltonian (1.1) 
using an extension of the Coleman-Mandelstam bosonization technique to the case with 
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boundary. However, to our knowledge such an extensioa has not been developed yet. The 
naive application of the known Coleman-Mandelstam ‘bulk‘ formulae does not give the 
factor e@’/’ in (3.15), which seems to be some kind of ‘boundary anomaly’ (see 1231 for 
the related discussion). 

4. Solutions of the Bethe ansatz equations with boundary terms 

As is well known in the case of the bulk Thimng model or equivalently the periodic XXZ 
chain, the bound states are associated with various types of solutions of the Bethe ansatz 
equations involving, in general, complex roots 1141. By analogy, we expect the boundary 
bound states to correspond to new complex solutions made possible by the boundary terms: 
technically, these terms change the asymptotic behaviour of the left-hand side of the Bethe 
ansatz equations (3.7), allowing solutions different from the usual stings, and .‘rooted‘ on 
a H dependent basic root. 

Consider first the simplest example of the XXZ chain with one spin down as given in 
section 3.1 and (3.6). Since our goal is to study purely boundary effects, we will look for 
the solutions of the Bethe equations that give rise to a wavefunction localized at x = 0 
or x = L and exponentially decreasing away from the boundary. The states described by 
such wavefunctions will be referred to as the ‘boundaly bound states’ below. For this, one 
should have a purely imaginary in (3.2). We consider here the h i t  of L large, when the left 
and the right boundaries can be treated independently and the overlap of the corresponding 
wavefunctions is negligibly small (for the physical applications it is necessary’ to take the 
scaling limit anyway). In the limit L + 00, it is easy to check that there are two such 
solutions to (3.6): a = iao = -iyH+is(L, H, H’) and a = ia; = -iyH’+is’(L, H, H’), 
where E - exp(-ZKL) and we defined K > 0 as 

(similar relations are assumed for E’, K’). Solution ab gives a wavefunction (3.2) localized 
at x = L: f(’)(x)~ - Solution a0 gives a wavefunction localized at x = 0, 
f(”(x) - e-”, provided we renormalize the wavefunction (3.2): 

f“’ + f(”[sinh +(a - iyH) sinh +(a + iyH)]’/’. (4.1) 
In the special case H = H‘, there is only one proper solution 01 = iao = - iyH+ iE(L, H) 
with~s - exp(-d). The wavefunction (3.2) behaves as the superposition of the ‘left’ and 
the ‘right’ boundary bound states, f “ )  - (e-” +.e-K(‘-*’). Note that the boundary bound 
state appears in the above example only when the boundary magnetic field is large enough 
namely, h > hmt. This follows from the fact that a should be such that 0 e a0 i K. 

Now consider the general case of the inhomogeneous model (3.7). The basic boundary 
one-string solution to (3.7) is still a = iao = -iyH + ic, provided that 0 < a0 < z. 

t More generally, the criterion of existence of boundary bound state solutions allows U to determine threshold 
fields for any A. For this, let us emmine (3.5). The parameter k is defined modulo 21r, therefore we restrict k 
to lie within k E ( 0 . 2 ~ ) .  Two possibilities, k = ia and k = H t in where a > 0, lead to two different threshold 
fields, determined by the fact that the denominator in (3.5) should vanish 

h i )  = A +  I = A - 1 

and the regions where boundary bound states could in principle exist are h < A - 1 and h > A t 1 (one has to 
be careful here and check that these solutions of BE indeed correspond to the stable stntes of the model). When 
A > 1, there are two different threshold fields, in agreement with the results of limbo e t d  11.51. In the region of 
interest. (Ai < I ,  there is only one threshold field h i ) .  



6614 

This solution is possible due to an argument very similar to the one used in the bulk as 
L 3 00, the two first terms of (3.7) decrease exponentially fast, while the third increases 
exponentially fast, and 6 - exp(-2~L) with 

S Skorik and H Saleur 

" Dl ro r  sell - __r___ 

* imo I i Z i r  

. ' no .LI J  
* 1o0.2q 

" 1% 

R e  

sinh2(A/2) + sin2((ao - y)/2) 
sinhZ(A/2) + sin*((ao + y)/2)' 

e-K = (4.2) 

(4.3) 

In other words, the inequality (4.3) states that the lowest root of the boundary string should 
be below the axis Ima = 0 and above the axis Ima = --K. Another constraint follows 

t Note that. associated with each boundq n-suing, then is also the solution to (3.7) obtained by complex 
conjugation ofall a's. The existence ofsuch a 'mirror image' is the consequence ofthe symmehy of equations (3.7) 
and it is of no impomce  to physics. In the bulk case, it is easy to show [I71 that all solutions are invariant under 
complex conjugation. but this result does not hold here. In fact. a solution which has both the boundary n-string 
and its mirror i m g e  would lead to a vmishing wavefunetion. 
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Figure 2 The second type of boundary string 

if we multiply equations (3.7) for all the roots of the boundary (n, N)-string. This gives 
exp(-2L K , ~ )  = E ] .  So, one should have C K , ~  > 0. The latter sum can be easily evaluated 
if one uses expression (4.2) simplified in the limit A + CO: K = 4e-" sin y sinao. The 
constraint obtained in such a way forces the number of roots above the Ima = 0 axis in 
the boundary string to be greater than the number of roots below Ima = 0. 

We have not been able to find any reasonable additional solution to the Bethe ansatz 
equations. The two sets of boundary strings we have encountered appear to be in one-to-one 
correspondence with the boundary bou.nd states identified in section~2 using the bootstrap 
approach. To clarify this identification we now compute related masses and S-matrices. 

5. S-matrices and bound state properties from the exact solution 

5.1. Bare and physical Bethe ansatz equations 

The 'bare' Bethe equations follow from taking the derivative of (3.8). Defining 2 L ( p ~  + 
pL)dor to be the number of roots in the interval dor, one obtains coupled integral equations 
for the densities of strings pI. . . . , ptu1 and anti-strings pu: 

where * denotes convolution: 
m 

f * g @ )  = ~ _ d S f ( u - B ) s ( B ) .  

These densities are originally defined for a > 0. But the equations allow us to define 
pk(-L?) ,OX(@) in order to rewrite the integrals to go from -w to CO. If we totally 
neglect the boundary terms (terms- L-') in (5.1). we will end up with the same equations 
as for the periodic inhomogeneous six-vertex model [121. The various kernels and sources 
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in (5.1) are defined as follows: 
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p"(01) = f (in + LY + A, y )  + f (in +a - A, Y) 
pda) = f ( ~ i  + A, Y) + f(% - A, Y) 

or 

where the sum in the last expression is taken over the rapidities of the bulk k-string roots 
centred on 01. 

The kernels fkl are the phase shifts of the bulk k-string on the bulk l-string obtained by 
summing (3.4) over the rapidities of smng roots. The boundary terms are: 

K,(LY) = -2 f ' (2a ,  2 y )  - f ' ( a  + irr, yH) - f'(u + irr, yH') - 2n6(01) 
Uk(O1) = CI2f'(2O1;,  2 Y )  + f'(% YH) + f '(LYi, yH')] - 2 7 r W  

a, 

(the sum above is over the roots of the bulk k-string centred on a), 

fiLJ)(a) = C f ( i n + a  - 0 1 ; , 2 y ) + f ( i + a + a i , 2 y )  
cl, 

and ai denotes the rapidities of the roots in the boundary n-suing. 

where 01; denotes the roots in the boundary n-string, while uj denotes the roots in the bulk 
k-string centred on a. The parameters w ,  w' are equal to I or 0, depending on whether the 
boundary string is present or not. In our ferromagnetic case the ground state of the periodic 
inhomogeneous X X Z  chain is filled with anti-strings. The physical Bethe equations are 
obtained [18,19] by eliminating the 'non-physical' density pu from the right-hand side of 
(5.1). This is done simply by solving for pu in the last equation in (5.1) and substituting it 
into the others. The result is 

where 
, /(RI 

uu + wf,"" ~+ 0 fn,  
2rr - f' = 2rr (5.3) 

Un,d;k = U* - 0f;:y  - W'f$' - f;k * u~,n~;olzJI (5.4) 

and different products (ratios) of kernels are defined through their Fourier transforms. 

5.2. The mass spectrum of bounday bound states 

We assume first that the ground state is built by filling up the Dirac sea with anti-strings, as 
in the case of the periodic X X Z  chain. We will see below that this is not always true, The 
presence of the boundary strings in the Bethe equations deform the distribution of roots 
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and modifies the density of the Dirac sea pu by a term Sp&L of order L-'. With the 
boundary n-string, the Bethe equation for the density of the Dirac sea particles fi0 is 

where f,, was defined above. Subtracting from (5.5) the equation for the density of the 
Dirac sea alone, 

(5.6) 

one obtains the equation for Spa: 
+ca 

f'@ - B ) S P A B )  d b  +  SPA^) - f,'(a) (5.7) L O = -  

SP" = 2UFa - P d .  

The solution to (5.7) can be written in terms of the Fourier transform Sbo(k) = 
dor $kuSpa (or) as follows: 

From the boundary n-string iw, + Ziys, s 2 0, 1, . . . , n - 1, we obtain 

4coshyks inhnykcOsh(ao+yn-y)k  
sinhnk (5.9) 

A, f,(k) = -3n 

Zcoshyksinhnykcosh(or0fyn - y)k 
sinh ykcosh(n - y)k Sba(k) = - (5.10) 

where we use 
sinh(n - 2y)k 

J'W) = 2~ ~ s i n h n k  . 
Expressions (5.9) and (5.10) are valid for the n-strings with n = 1,2,. . . , [(t  + El)/:]. For 
the longest n-string with n = ~ [ ( t  + H ) / 2 ]  + 1 - n, + 1 the Fourier transforms f' , ,SCu 
differ from (5.9) and (5.10): 

4 cosh yk sinh n,yk cosh(or0 + yn. - y)k 
sinhnk 

-2H 

sinh(n - 2y)k cosh(oro + 2yn, - n)k 
sinh ykcOSh(n - y)k Sbu(k) = 

2coshyksinhn*ykcosh(oro+ y n ,  - y ) k  
sinh ykcosh(n - y)k 

- 

(5.11) 

(5.12) 

The conserved U(1)  charge in the boundary XXZ chain is the total projection of the spin 
on the z axis. In the thermodynamic limit the charge of the boundary n-string with respect 
to the vacuum is determined by [ 111: 

+? +m +m Q n = n + i  2L& da - 2Lp,dor=n+f Sp,dor=n+$,&(O). (5.13) 
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Using (5.10) we obtain for the n-string Q, = 0, and for the longest boundary string 
equation (5.12) yields Q. = a /2y .  Similarly, the mass of the boundary strings in the 
thermodynamic limit according to (3.9) is given by 

m, = h, + 
where the expression for h, is 
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+m +m +m 
ZLah ,  dor - 1 2Lp.h, dor = h, + f lm ha@, dor (5.14) 

n - y  2sinh ykcos Ak 
n sinhnk 

i , ( k )  = -ji = -2(x - y )  

and the soliton mass [I21 

We obtain in the limit A 3 CO 

n A m, = m [sin -(2n - I - H )  + sin - ( H  + I)] 
21 21 

(5.15) 

(5.16) 

Since the parameter H varies in the interval -A - 1 < H < -1, the mass of the longest 
string m, (5.16) is always negative, while the other boundary strings have positive masses 
(5.15). This means that the vacuum we have been working with is an unstable one in the 
region --I < H < -1 (h > hL). To cure the situation we define a new correct ground state 
by attributing the longest boundary string to the Dirac sea. The boundary excitations are 
obtained by successive removing of particles from the top of the longest boundary string. 
The charge and mass of such excitations with respect to the correct ground state are given 

IT 
m. =msin-(H+I) .  21 

by 

(5.17) 
Jr IT m, = mcos -(A+ 1 i- H -2n)  n = 0, 1,. . . , n,. 

2h Qn = -5 
Note that the number of excitations (5.17) is equal to the number OF roots in the longest 
boundary string, n, + 1. The charge of such boundary excitations is equal to the charge of 
the hole in the Dirac sea. We identify a hole with a sineGordon soliton, and the boundary 
excitations described above, with the boundary bound states Io,,) (2.3). Their masses and 
charge (5.17) and the counting coincide provided that 

T f + H + l = -  
IT 

(5.18) 

and the lattice charge Q is properly normalized. This expression is in fact valid for all 
values of h > 0. The authors of [6 ] ,  deriving this relation in the region h hh, obtained a 
different expression because they used a different branch of logarithm in (3.3). 

In the above discussion we considered the boundary bound states related to one of 
the boundaries (say, the left one). In principle, one should include in the ground state 
the longest boundary string ido i- 2iy1, I = 0.1, . . . , [ ( t  + H')/2], corresponding to the 
right boundary as well. The energy of the excitations due to both boundary strings is a 
superposition of energies of the form (5.'17). When H = H', these two boundary strings 
overlap and the usual Bethe wavefunction vanishes. However, on physical grounds we do 
not expect anything special to happen when the boundaries are identical. So, in such a case, 
one should use as a wavefunction a properly renormalized version of the limit H --f H' of 
the usual Bethe wavefunction. 



The sineGordon model with Dirichlet boundary conditions 6619 

When the magnetic field varies, the above picture indicates a qualitative change in the 
structure of the ground state at values H = -r.  -t + 2, -t + 4, . . _. At these values, the 
mass of the bound state with the highest mass approaches the soliton mass and it becomes 
unstable. As discussed in 1201 and [4J for the Ising case, this decay corresponds to large 
boundary fluctuations that propagate deeply into the bulk. 

The mass of the boundary (n ,  N)-string with respect to the correct vacuum can be 
calculated analogously. The result is 

m n , N = m c o s ( ~ - ~ ) + m c o s ( ~ - - ~  IT ) -mcos -f- 2 N -  2h 'x) (5.19) 

where we used (5.18) to express H in terms of 4. This result is rather confusing to us, 
because the above mass does not correspond in general to one of the bound state masses 
found in the bootstrap approach. It can be considered as a sum of such masses, hinting 
that the (n,  N)-string describes actually coexisting bound states, but the calculation of the 
corresponding boundary S-matrix does not allow such an interpretation. We are forced (but 
see the conclusion) to consider that only the (n ,  N)-strings with n = n, + 1 occur, that is 
the physical excitations are built by adding roots to the ground-state configuration below 
iao. The charge and energy of such excitations with respect to the correct vacuum is given 
by 

Q N = - - - = O  Z I T  mN=mcOs (: --- i) -mcos (' -f- 2 N - 1 ~ ) .  (5.20) 
2Y 2Y h 2h 

These coincide with the charge and mass of the boundiuy bound states I $ ~ , N )  (2.10). The 
range of N (4.3) agrees with the range of the corresponding parameter in (2.9). 

5.3. Boundary S-matrices 

It remains to check that the boundary S-matrices obtained by the bootstrap approach 
coincide with those of the lattice model. To extract the boundary S-matrices from the 
Bethe equations we will follow the discussion of [6]. Briefly, the idea of the method is as 
follows. The physical excitations of the lattice model in the limit A + w can be thought 
of as relativistic quasi-particles with rapidities 6;. The integrability implies that the set [Qi} 
is conserved. Moreover, if the scattering matrices are diagonal, each particle preserves its 
rapidity. Assuming that this is the case, the quantization of a gas of N quasi-particles on 
an interval of length L results in the integral equations for the set of allowed rapidities [6]: 

(5.21) 

where the subscript stands for the type of particle, and 

(obc(@) = -i- In & ( B )  

@,(e) = -i- ln R;(')(O) - i--ln R;I~'(Q) + i- In ~hh(20) - 2xr3(0). 

Equations (5.21) should be compared with the physical BE (5.2), which gives bulk and 
boundary S-matrices. We will confine our attention to the boundary S-matrices only, keeping 
track of those terms in (5.3), (5.4), and (5.22), which depend on the boundary magnetic 
field (the field-independent terms contribute to Ro and their agreement has been shown in 
[6]). The discussion for the left boundary is completely parallel to that of the right one. 
Also, it is sufficient to consider only b = soliton and b = anti-soliton in (5.21). We identify 

d 
dQ 
d d d 

. .  
(5.22) 

de de dQ 
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a hole in the anti-string distribution in (5.2) with a soliton in (5.21), and ( t  - 1)-string with 
an anti-soliton. Below we give explicit expressions only for the kernels in (5.2) which we 
need for our analysis. The other expressions are listed in [61. 

hfi (-t - 1 < H c: -I). This corresponds to the case without 
boundary excitations in the spectrum, 
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Suppose first that h 
< x/2. Choose OJ = w‘ = 0 in (5.2). Then 

sinh(21r + yH)k + . . 
@(k) = 2.x 

sinh z k  
(we omit the If-independent and H’-dependent terms), 

sinh(2n + yH)k 
2 sinh yk cosh(x - y)k 

fiy = 211 +.... 
Using (5.22) we compare this expression with (2.19) (recafl that the rapidity 01 should be 
renormalized (Y --f 0 = trr/2h) and find complete agreement under the identification (5.18). 
Similarly, one can use 

sinh(rr + y~H)ksinh(x - y)k + , , , - ( E !  = -2l 
ut-I sinhnksinhyk 

+... sinh(2 + H )  yk 
2sinhykcosh(z - y)k 

iy; = -2x 

to compare U,-] with (2.18) and obtain agreement as well. 
Next, suppose that h > hfi (-2 < H < -1). To obtain the boundary S-matrices for 

scattering on the ground state 10)~  set o = w‘ = 1 and choose - the boundary string to be 
the longest string, n = n, + 1 in (5.2). Then, using (5.11), f’n.+I:f-, = -f: and 

.. 

+... sinh y Hk 
sinhnk 

;p’ = 2n 

+... sinh(H +2[(1 - If)/Z])yk *(L) - -(U - zx 
%-I -U, sinh yk 

(5.23) 

we obtain 

sinh y Hk 
Zsinh yk cosh@ - y)k 

sinh(rr - 2y)k cosh(H + I  - 2nJyk 
sinh ykcosh(x - y)k 

- (L) 
21r 

..= + U, +1Yl 

Zcoshyksinhn,ykcosh(H - n e +  1)yk +,,. - 
sinh ykcosh(x - y)k 

+... q c !  - ̂ (L!  sinh(H +2[(1 - H)/2])yk 
sinh yk .+1:t--I - U,.+,:, - 2 x  

which agrees with (2.15) and (2.18) under the identification (5.18). Note that the last 
relation, which follows directly from (5.3), (5.4), and (5.23), is valid also for fin:a and 
fifi,,-, with any n. In the same manner one can calculate the boundary S-matrices for 
scattering on the boundary n-strings and check that they indeed coincide with (2.16) and 
(2.17) under the condition (5.18). For this, one needs to take w =U‘ = 1 in (5.2) and use 
(5.9), 2;,-] = -2. Finally, one can compute also the boundary S-matrix for the scattering 
on the (n. + 1, N)-strings, again in agreement with the bootstrap results. 

6. Condusion 

The question of boundary bound states even in the simple Dirichlet case appears rather 
frustrating: using the X X Z  lattice regularization or equivalently the Thirring model, we 
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have only been able to recover the Bo and &=o.N boundary bound states. A way out is to 
consider solutions of the Bethe ansatz equations made of an (n. ,%')-string superposed with 
the (n* + I)-string that describes the ground state. This is not allowed in principle, in the 
model we consider, because the Bethe wavefunction vanishes when two roots are equal. 
However, putting formally such a solution in-the equations gives the masses of the Sn,N 
states and the S-ma@ix also matching the bootstrap results! But the meaning of this is not 
clear to us. 

Finally, let us mention that one can calculate the ground-state energy in the 
thermodynamic limit by solving equation (5.5) for the ground-state density and using (3.9): 

E,  = l+m 2L&(or)h(or) dor. 

As a result, we get the combination E,, = &ulk + Ebmdury,  where Ebulk is the well known 
sine-Gordon ground-state energy [ZI] 

and E b o u n h y  is the contribution of the boundary terms (A, + 00): 

n2 1. [ sin[+/Z(n - y ) ]  4(n - Y )  
m s i n W  + 2 ) v / 2 ( ~  - U N  + + 

E b o u n d g y  = - 2 
We see that the ground-state energy of the boundary sineGordon model is a smooth function 
of the boundary magnetic field for the whole range of h in the X X Z  regularization, hence 
of (00. The changes in ground-state structure do not affect E ,  as is expected since in such 
a unitary model there is no (one-dimensional) boundary transition. 

The finite size corrections to the ground-state energy themselves (the genuine Casimir 
effect) can be computed using the technique developed in [21]. It is also interesting to 
consider the inhomogeneous six-vertex model with an imaginary boundary magnetic field 
ensuring commutation with~Uqs1(2) [22].  This should presumably lead to a solution of 
minimal models with integrable boundary conditions. We will report on these questions 
separately 1241. 
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